Modern Computational Accelerator Physics

James Amundson Alexandru Macridin Panagiotis Spentzouris

Fermilab

USPAS January 2015

Lecture 4

What we have learned so far

Integrating ODEs

- Integrating using GSL
 - Lower-order methods work, but require many steps,
 - Higher-order methods can sometimes produce accurate results with (sometimes dramatically) fewer steps.
 - Not proven: generally true for smooth functions
 - Higher-order steps are more complicated.
 - Time per step is higher.
 - Optimal speed for finite-order methods
 - Higher orders stop being faster at some point.
 - Optimal order is problem-dependent.
 - Classical methods have limitations with respect to long-time simulations.
 - Error not bounded.
 - Energy increases/decreases monotonically with time.

Integrating ODEs (2)

- Symplectic integration
 - Method we used was only second order.
 - Requires many steps for an accurate solution.
 - Higher orders possible?
 - Yes, see later...
 - Stable over long term.
 - Error stays bounded.
 - Energy nearly constant.
- n.b.: symplectic integration is interesting in other fields, particularly orbital mechanics
- Which methods are best (classical or symplectic) depends on the problem.
 - Long-term simulations require symplecticity.
 - Classical methods might be more accurate/efficient in the short term.

End of Part 1

Next, we turn to topics more specific to accelerator physics. We will return to symplectic integration, but only after we have built up enough machinery to do it in a realistic accelerator context.